If the radius of \(_{13}^{27}\mathrm{Al}\) nucleus is taken to be \({R}_{\mathrm{Al}},\) then the radius of \(_{53}^{125}\mathrm{Te}\) nucleus is near:

1. \(\left(\frac{53}{13}\right) ^{\frac{1}{3}}~{R_{Al}}\) 2. \(\frac{5}{3}~{R_{Al}}\)
3. \(\frac{3}{5}~{R_{Al}}\) 4. \(\left(\frac{13}{53}\right)~{R_{Al}}\)
Subtopic:  Nucleus |
 80%
Level 1: 80%+
NEET - 2015
Hints
Links

The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 68%
Level 2: 60%+
AIPMT - 2014
Hints

A certain mass of hydrogen is changed to Helium by the process of fusion. The mass defect in the fusion reaction is \(0.02866~\text{u}.\)The energy liberated per nucleon is:
(given \(1~\mathrm{u} = 931~\text{MeV}\) )
1. \(26.7~\text{MeV}\)
2. \(6.675~\text{MeV}\)
3. \(13.35~\text{MeV}\)
4. \(2.67~\text{MeV}\)
Subtopic:  Mass-Energy Equivalent |
Level 3: 35%-60%
AIPMT - 2013
Hints

advertisementadvertisement

How does the binding energy per nucleon vary with the increase in the number of nucleons?
1.  decrease continuously with mass number.
2. first decreases and then increases with an increase in mass number.
3. first increases and then decreases with an increase in mass number.
4. increases continuously with mass number.
Subtopic:  Nuclear Binding Energy |
 81%
Level 1: 80%+
NEET - 2013
Hints

If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)

Subtopic:  Nucleus |
 89%
Level 1: 80%+
AIPMT - 2012
Hints
Links

The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000~\text{kW}\). The mass decay of \(\mathrm{U}^{235}\) per hour is approximately equal to:
1. \(20~\mu\text{g}\)
2. \(40~\mu\text{g}\)
3. \(1~\mu\text{g}\)
4. \(10~\mu\text{g}\)

Subtopic:  Mass-Energy Equivalent |
 68%
Level 2: 60%+
AIPMT - 2011
Hints

advertisementadvertisement

Fusion reaction takes place at high temperature because:
 
1. atoms get ionized at high temperature
2. kinetic energy is high enough to overcome the Coulomb repulsion between nuclei
3. molecules break up at high temperature
4. nuclei break up at high temperature

Subtopic:  Nuclear Energy |
 82%
Level 1: 80%+
AIPMT - 2011
Hints

A nucleus \({ }_{{n}}^{{m}} \mathrm{X}\) emits one \(\alpha\text -\text{particle}\) and two \(\beta\text- \text{particle}\) The resulting nucleus is:

1. \(^{m-}{}_n^6 \mathrm{Z} \) 2. \(^{m-}{}_{n}^{4} \mathrm{X} \)
3. \(^{m-4}_{n-2} \mathrm{Y}\) 4. \(^{m-6}_{n-4} \mathrm{Z} \)
Subtopic:  Types of Decay |
 82%
Level 1: 80%+
AIPMT - 2011
Hints

The mass of a Li37 nucleus is \(0.042~\text{u}\) less than the sum of the masses of all its nucleons. The binding energy per nucleon of the Li37 nucleus is near:
1. \(4.6~\text{MeV}\)
2. \(5.6~\text{MeV}\)
3. \(3.9~\text{MeV}\)
4. \(23~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 74%
Level 2: 60%+
AIPMT - 2010
Hints

advertisementadvertisement

The binding energy per nucleon in deuterium and helium nuclei are \(1.1\) MeV and \(7.0\) MeV, respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is:
1. \(2.2\) MeV
2. \(28.0\) MeV
3. \(30.2\) MeV
4. \(23.6\) MeV

Subtopic:  Nuclear Binding Energy |
 83%
Level 1: 80%+
AIPMT - 2010
Hints