The physical quantities not having the same dimensions are: 

1. Speed and (μ0ε0)1/2

2. Torque and work

3. Momentum and Planck's constant

4. Stress and Young's modules

Subtopic:  Dimensions |
 72%
Level 2: 60%+
Hints
Links

The dimensional formula of relative density is: 

1. ML–3

2. LT–1

3. MLT–2

4. Dimensionless

Subtopic:  Dimensions |
 73%
Level 2: 60%+
PMT - 2003
Hints

The dimensional formula for young's modulus is 

1. ML1T2

2. M0LT2

3. MLT–2

4. ML2T2

Subtopic:  Dimensions |
 82%
Level 1: 80%+
PMT - 2004
Hints
Links

advertisementadvertisement

Frequency is the function of density (ρ), length (a) and surface tension (T). Then its value is 

1. k.Tρ1/2a3/2

2. kρ3/2a3/2/T

3. T3/21/2a3/2

4. T3/21/2a1/2

Subtopic:  Dimensions |
 70%
Level 2: 60%+
Hints
Links

The dimensions of electric potential are:

1. [ML2T2Q1]

2. [MLT2Q1]

3. [ML2T1Q]

4. [ML2T2Q]

Subtopic:  Dimensions |
 74%
Level 2: 60%+
Hints
Links

The dimension of RL are

1. T2

2. T

3. T–1

4. T–2

Subtopic:  Dimensions |
 68%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The dimensions of shear modulus are

1. MLT–1

2. ML2T2

3. ML1T2

4. MLT2

Subtopic:  Dimensions |
 80%
Level 1: 80%+
PMT - 2004
Hints
Links

Pressure gradient has the same dimensions as that of:

1. Velocity gradient

2. Potential gradient

3. Energy gradient

4. None of these

Subtopic:  Dimensions |
 58%
Level 3: 35%-60%
Hints
Links

If force (F), length (L) and time (T) are assumed to be fundamental units, then the dimensional formula of the mass will be

1. FL1T2

2. FL1T2

3. FL1T1

4. FL2T2

Subtopic:  Dimensions |
 75%
Level 2: 60%+
Hints
Links

advertisementadvertisement

In the relation, \(y=a \cos (\omega t-k x)\), the dimensional formula for \(k\) will be:
1. \( {\left[M^0 L^{-1} T^{-1}\right]} \)
2. \({\left[M^0 L T^{-1}\right]} \)
3. \( {\left[M^0 L^{-1} T^0\right]} \)
4. \({\left[M^0 L T\right]}\)

Subtopic:  Dimensions |
 78%
Level 2: 60%+
Hints
Links