The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are 

1.\( k g m s^{- 1}\)                               

2.\( k g m s^{- 2}\)

3. \(k g s^{- 1}\)                                   

4. \(k g s\)

 68%
Level 2: 60%+
NEET - 2012
Hints

The displacement of a particle along the \(x\text-\)axis is given by \(x= a\sin^2\omega t\). The motion of the particle corresponds to:
1.  simple harmonic motion of frequency \(\frac{\omega}{\pi}\).
2.  simple harmonic motion of frequency \(\frac{3\omega}{2\pi}\).
3.  non-simple harmonic motion.
4.  simple harmonic motion of frequency \(\frac{\omega}{2\pi}\).
Subtopic:  Simple Harmonic Motion |
Level 4: Below 35%
NEET - 2010
Hints

The period of oscillation of a mass \(M\) suspended from a spring of negligible mass is \(T.\) If along with it another mass \(M\) is also suspended, the period of oscillation will now be:
1. \(T\)
2. \(T/\sqrt{2}\)
3. \(2T\)
4. \(\sqrt{2} T\)

Subtopic:  Linear SHM |
 76%
Level 2: 60%+
NEET - 2010
Hints

advertisementadvertisement

A body performs simple harmonic motion about \(x=0\) with an amplitude a and a time period \(T\). The speed of the body at \(x= \frac{a}{2}\) will be:
1. \(\frac{\pi a\sqrt{3}}{2T}\)
2. \(\frac{\pi a}{T}\)
3. \(\frac{3\pi^2 a}{T}\)
4. \(\frac{\pi a\sqrt{3}}{T}\)
Subtopic:  Linear SHM |
 78%
Level 2: 60%+
NEET - 2009
Hints

Which one of the following equations of motion represents simple harmonic motion? (where \(k,k_0,k_1~\text{and}~a\) are all positive.)
1. Acceleration \(=-k_0x+k_1x^2\)
2. Acceleration \(=-k(x+a)\)
3. Acceleration \(=k(x+a)\)
4. Acceleration \(=kx\)
Subtopic:  Simple Harmonic Motion |
 74%
Level 2: 60%+
NEET - 2009
Hints

Two simple harmonic motions of angular frequency \(100~\text{rad s}^{-1}\) and \(1000~\text{rad s}^{-1}\) have the same displacement amplitude. The ratio of their maximum acceleration will be:
1. \(1:10\)
2. \(1:10^{2}\)
3. \(1:10^{3}\)
4. \(1:10^{4}\)

Subtopic:  Linear SHM |
 87%
Level 1: 80%+
NEET - 2008
Hints

advertisementadvertisement

A point performs simple harmonic oscillation of period T and the equation of motion is given by x= a sin ωt+π/6.After the elapse of what fraction of the time period the velocity of the point will be equal to half to its maximum velocity?

1.  T8

2.  T6

3. T3

T12

Subtopic:  Simple Harmonic Motion |
 67%
Level 2: 60%+
NEET - 2008
Hints

An SHM has an amplitude \(a\) and a time period \(T.\) The maximum velocity will be:
1. \({4a \over T}\)       
2. \({2a \over T}\)
3. \({2 \pi \over T}\)
4. \({2a \pi \over T}\)
Subtopic:  Simple Harmonic Motion |
 91%
Level 1: 80%+
Hints

Two particles \(P\) and \(Q\) start from origin and execute Simple Harmonic Motion along \(x\text-\)axis with same amplitude but with periods \(3\) seconds and \(6\) seconds respectively. The ratio of the velocities of \(P\) and \(Q\) when they meet is:
1. \(1:2\)
2. \(2:1\)
3. \(2:3\)
4. \(3:2\)
Subtopic:  Simple Harmonic Motion |
 85%
Level 1: 80%+
Hints

advertisementadvertisement

The angular velocities of three bodies in simple harmonic motion are ω1,ω2,ω3 with their respective amplitudes as A1,A2,A3. If all the three bodies have same mass and maximum velocity, then

1. A1ω1=A2ω2=A3ω3       
2.  A1ω12=A2ω22=A3A32
3. A12ω1=A22ω2=A32ω3   
4. A12ω12=A22ω22=A2  

Subtopic:  Simple Harmonic Motion |
 89%
Level 1: 80%+
Hints